Beauty-related measurements at RHIC

Zaida Conesa del Valle

Laboratoire Leprince-Ringuet (École Polytechnique, CNRS/IN2P3, France)

RHIC/AGS Meeting 2009

Brookhaven National Lab., Upton (USA), 1-5 June 2009

Motivation

Observe:

- Mesons (π⁰, η, ρ, ω, φ,
 K) are suppressed,
- birect γ are a reference
- ... suggest quark energy loss in the medium.

- What do happens to heavy quarks?
 - They are heavier... are they less sensitive to the medium at RHIC?
 - Or is the medium density high enough for them to be suppressed?
- A fraction of them will form quarkonia, what happens to those?
- What do data tell?

Challenge and Outline

Introduction, some words of caution:

- Bottom and bottomonia are hard rare probes.
- Triggering on them is challenging.
- Although at RHIC they are produced scarcely, we already observe first hints of their production.

Outline:

- Beauty-related measurements
 - Single non-photonic spectra
 - ⋄ B/(B+D) separation via particle correlations
 - Hints of their behaviour in heavy ion collisions
- > First Y measurements at RHIC, p-p, dAu & Au-Au

Heavy quark collection menu at RHIC

$$D^+ \rightarrow K^- \pi^+ \pi^+$$
; $D^0 \rightarrow K^- \pi^+$; ...

- Charm cross-section
- ✓ Charm spectrum

[c.f. Z. Tang's talk]

Indirect measurements:

$$D^0 \rightarrow K^- \ell^+ \nu$$
; $B^- \rightarrow D^0 \dots$

- ✓ Heavy quark cross-section
- ✓ Heavy quark spectrum

Dilepton invariant mass

✓ Charm & beauty crosssections

PH***ENIX**

Particle correlations

• ℓ^+ ℓ angular correlations

PH***ENIX**

- STAR PH*ENIX
- l hadron angular correlations
- ✓ Charm & beauty cross-sections
- √ Charm & beauty spectra
- Waiting for B-tagging via decay vertex reconstruction...

Open heavy flavor p_t spectra

- Total heavy flavor:
 - Single inclusive e
 spectra
 - Subtract cocktail of known sources: π⁰, η, γ conversion..
 - Cross-check inserting an additional converter
- Open heavy flavor by subtracting J/Ψ, Υ, Drell-Yan.
 Negligible contribution at low p_t, but up to ~16% at higher p_t.
- Studies done for p-p & Au-Au.
- Agreement with FONLL within current uncertainties.
- Charm dominates at low pt $\sigma(c\overline{c}) = 567 \pm 47$ (stat) ± 224 (sys) μb;
- This does not allow to measure the bottom contribution.

[A. Dion, QM 2009 talk]

6/25

Heavy flavor p_t spectra comparison

STAR total heavy flavor p, spectra

[STAR, arXiv:0805.0364]

- Constructed from single e[±], single μ[±] and D mesons
- The shape is well described by FONLL, but σ(cc̄,data)/σ(cc̄,FONLL)=5.5±0.8(stat)±1.7(sys) in p-p coll.

- Both STAR & PHENIX have multiple independent measurements.
- Their calculations are self-consistent,
- ... but they differ by about a factor of 2!

Dilepton invariant mass

p+p at \sqrt{s} = 200 GeV

- e^+e^- at |y|<0.35 in p-p coll. at 200 GeV
 - Subtract light meson decays
 - Remaining amount accounted by cocktail of charm, bottom and Drell-Yan decays.

Two independent and self-consistent open charm cross section measurements consistent with FONLL, $\sigma(data)/\sigma(FONLL)\sim 2.0$

Electron-hadron angular correlations

B and D decays angular distributions differ.

Electron to charged hadron (no PID) or D meson correlations

Photonic electron contribution subtracted by neglecting all electrons associated to pairs with m_{ee} close to π⁰, η Dalitz decays and γ-conversions.

 Correlations compared to PYTHIA B & D predictions to extract B/(B+D) ratio per p_t bin

Result compatible with FONLL

[STAR, arXiv: nucl-ex/0609034 (2006)] [B.Biritz, QM 2009 talk]

Electron-K correlations

- Electron K(no ID)

 invariant mass per
 electron is different for
 bottom and charm decays
- Compared to PYTHIA predictions for B & D decays to extract B/(B+D) ratio per p_t bin
- Result is compatible with FONLL prediction and STAR measurements.
- At p_t>5 GeV/c bottom contribution becomes significant!

[PHENIX, arXiv: 0903.4851 (2009)] [Y.Morino, QM 2008 talk] [STAR, arXiv: nucl-ex/0609034 (2006)] [B.Biritz, QM 2009 talk]

Beauty and charm decays pt spectra

- → Independent bottom and charm decays p_t spectra,
- ...consistent with FONLL.
- \Rightarrow Extrapolation to low p_t $\sigma(b\overline{b}) = 3.2^{+1.2}_{-1.1}(stat)$ $^{+1.4}_{-1.3}(sys)$ μb.

[PHENIX, arXiv: 0903.4851 (2009)] [Y.Morino, QM 2008 talk] Open heavy flavor electron p_t spectrum

its B/(B+D) p_t dependence

Charm and beauty cross sections

Independent measurements of charm and bottom cross sections agree with each other and follow the FONLL energy dependence trend.

Open heavy flavor rapidity dependence

- Heavy flavor spectra is also measured at forward rapidity
 - ♦ Single μ spectra,
 - Vertex distribution & stopped hadrons to control background.
- ➤ do/dy is consistent with FONLL within the uncertainties
- ... but does not allow B & D separation

Forward rapidity measurements in Cu-Cu are available though the uncertainties are large.

[D.Hornback, QM 2008 talk] [I.Garishvili, QM 2009 poster]

Cold and hot nuclear matter influence

- There is no strong evidence of any cold-nuclear matter suppression (large uncertainties, R_{dAu} ≥ 1)
 → need of more precise data
- Both experiments observe a strong suppression of heavy flavor decays in central Au-Au coll., of the same order than π^0 and hadron suppression ... it persists up to high pt suggesting that both b & c loose energy!
- Tool to study the mechanisms of heavy quark energy loss... There is no unique interpretation yet!
- More precise measurements to come soon!

[c.f. W. Horowitz's talk]

Promising probes...

- (e-hadron) angular correlationsin Cu-Cu & Au-Au
 - May constrain charm and bottom decays behaviour in HI collisions,
 - Current uncertainties preclude any conclusion yet.
- (e-μ) angular correlations
 - Should allow to measure charm production cross-section in an intermediate y range,
 - Proof of principle in p-p coll.
- > Future vertex detectors
 - B-tagging purposes

Highlights from beauty...

- Heavy quark decays p_t spectra has been measured at RHIC.
 - Its shape is consistent with FONLL,
 - but there are discrepancies on the production cross-section.
- B/(B+D) ratio vs lepton p_t measurement and indicates that for p_t>5GeV/c beauty decays contribution is significant.
- Charm and beauty production cross sections have been computed.
- Heavy quark nuclear R_{AuAu} suppression up to high p_t indicates that both charm and beauty quarks suffer in-medium energy loss

- ... what seems to be missing:
 - \backsim STAR: $\sigma(pp)$ and analysis with its reduced material run
 - PHENIX: d-Au & CuCu studies
 - Precise vertex measurements from both STAR and PHENIX

Motivations

Lattice QCD predicts a sequential melting of the different quarkonium states...

	$J/\psi(1\mathrm{S})$	$\chi_c(1P)$	$\psi'(2S)$	Υ(1S)	$\chi_b(1P)$	Υ'(2S)	$\chi_b'(2P)$	Υ"(3S)
M [GeV]					9.86			10.36
E_s^i [GeV] T_d/T_c	0.64 2.1	$0.20 \\ 1.16$		1.10 > 4.0	0.67 1.76	$0.54 \\ 1.60$	0.31 1.19	0.20 1.17

[c.f. A. Mocsy's talk]

At most central RHIC Au-Au collisions:

- > IQCD expects all charmonia and bottomonia but Y could melt.
- \rightarrow J/ Ψ suppression is observed, but there is no unique interpretation yet
 - Are cold nuclear matter effects (CNM) understood ?

[c.f. Z. Tang's talk]

- Are gluon saturation mechanisms at play?
- Are J/Ψ regenerated ?
- The interest on Y measurements is :
 - Production mechanisms better understood, CNM influence probably smaller
 - Probe of IQCD, regeneration is negligible, Υ(1S) probably survives
 - The challenge is their low cross-section (statistics)

Upsilon states measurements in p-p

- Both experiments evidence Y production at mid-rapidity
- > PHENIX
 - Limited statistics, raw e⁺e⁻ yield 10.5^{+3.7}_{-3.6} (stat)
 - ♦ Studied it at forward rapidity too raw $\mu^+\mu^-$ yield 27 ± 5 (stat)
- STAR has an Y-dedicated trigger (e[±] E>4GeV)
 - Larger statistics, raw e⁺e⁻ yield 48 ±14 (stat)
 - ♥ Significant peak, >3σ measurement

Their production at RHIC

- Expected continuum contribution under the Y peak < 10-15%</p>
 - STAR,
 e⁺e⁻ continuum not subtracted
 Bdσ/dy|_{|y|=0} = 97 ± 28(stat) ± 22 (sys) pb
 - PHENIX, e^+e^- continuum subtracted $Bd\sigma/dy|_{|y|<0.35}=114^{+46}_{-45}$ pb $\mu^+\mu^-$ continuum not subtracted
- PHENIX and STAR measurements are in agreement and are consistent with pQCD calculations!

Cold nuclear matter effects

[H. Liu QM 2009 talk]

- Y→e+e- invariant mass
 - Raw yield 172 ± 20
 - ♦ 8σ significance
- e⁺e⁻ continuum not subtracted $Bd\sigma/dy|_{|y|=0} = 35 \pm 4 \text{ (stat)} \pm 5 \text{ (sys) nb.}$
- Compatible with calculation with EKS98 anti-shadowing.

Together with p-p calculation:

$$R_{dAu} = 0.98 \pm 0.32 \text{ (stat.)} \pm 0.28 \text{ (sys.)}$$

- Y→e+e- in d-Au is consistent with Ncoll scaling
- There is no evidence for strong cold nuclear matter influence on Y production

Hot nuclear matter effects

- STAR has evidence of Y production in Au-Au coll. ... waiting for its cross-section!
- PHENIX is able to reconstruct both J/Ψ & Y with the same trigger configuration and analysis technique
 - High mass yield is small N[8.5,11.5]=11.7^{+4.7}_{-4.6}
 - But J/Ψ are abundant and serve as relative normalization
 - Continuum contribution under the Y peak not subtracted yet
 - Upper-limit of the high mass signal on the Υ mass range

$$R_{AA}[8.5, 11.5] \propto \frac{N[8.5, 11.5]_{AA}/N[J/\psi]_{AA}}{N[8.5, 11.5]_{pp}/N[J/\psi]_{pp}} \times R_{AA}[J/\psi]$$

R_{AuAu}[8.5,11.5]<0.64 at 90%CL</p>

Playing to interpret data

 $R_{AuAu}[8.5,11.5]$ <0.64 at 90%CL High mass counts R_{AuAu} is suppressed, but why ?

- I. Tevatron measurements indicate that $\sim 50\%$ Y are from χ_b feed-down for p_t>8GeV/c (should be lower for smaller p_t). [CDF Coll. PRL84 (2000) 2094]
- Cold nuclear matter (shadowing, absorption), STAR: $R_{dA}[Y,Y',Y''] = 0.98 \pm 0.32 \pm 0.28$
- Only ~73% of Upsilons are ground states, which IQCD predicts not to melt, while the excited states could : $R_{AA} \sim 0.73$
- IV. Continuum (Drell-Yan,BB) contributions may vary from p-p to Au-Au
- Rough estimates
 - "Conservative": STAR-CNM x IQCD ~ 0.7
 - "Extreme": consider feed-down contribution is still 50% at low p_t STAR-CNM × IQCD × feed-down ~ 0.4
- But indeed... we do not know what is up yet!
- Need more statistics in all p-p, d-Au & Au-Au coll. to be able to derive any strong conclusion.
- Theoretical predictions would be most welcome!

Plots Summary

Many thanks to the organizers for the invitation.

Special acknowledgements to

H. Liu & R. Granier de Cassagnac

for interesting discussions.